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RHEOLOGY OF DISSEMINATION. PHASE II

1. INTRODUCTION
The project Rheology of Dissemination, contract number DAAK

11-83-C-0040, is developing the rheology of polymer solutions nec-

essary for understanding the processes of breakup of these liquids in

airstreams. In the period July 1984 through December 1985 the activ-

ities of this project have centered on setting up computational

techniques for doing numerical studies of the breakup processes. The

work of this period has been concerned with the derivation and

solution of a particular integro-differential equation; the aim has

been to develop techniques and Fortran subroutines useful in looking

at a panoply of problems as well as to develop general insight and a

feel for the importance of the various terms and physical parameters.

A particular problem was chosen for this purpose, a relatively simple

one with similarities to many of the common, practical methods of drop

formation. The breakup of a cylindrical jet under sinusoidal perturba-

tion is a well known and relatively simple phenomenon which probably

exhibits the important features of more complex drop forming pro-

cesses. It has offered more than enough complexities to fully occupy

our energies and the resulting algorithms and the experience in

applying them seem well worth the effort. Since the benefits are

expected to apply further and to be useful to other researchers, the

numerical program has been constructed modularly and is well annotated

to make it readily available and to allow the various sections and

subroutines to be extracted and used separately.

The breakup into droplets of a jet of liquid in air is a topic

of long standing. In the early nineteenth century Savart [1833]

initiated an experimental study of this topic and Plateau [1856]

established that the effect was dominated by surface tension forces.

(Curiously, though his meaning is unmistakeable, Plateau never uses

the term "surface tension"; perhaps it had not yet been coined). Some

years thereafter Lord Rayleigh [1879] was drawn to the problem by an

interest in so-called "sensitive" jets and flames which respond

stiongly to low level acoustic disturbances. Rayleigh's simple linear-

ized analysis of the stability of an inviscid liquid jet established

7



the importance of the wavelength of a disturbance and showed that only

those disturbances would grow that were axisymmetric and with wave-

lengths greater than the diameter of the jet. Subsequent experiments

in this field have looked at drop formation of jets, usually subjected

to a small periodic disturbance of known frequency.

Over the last thirty years there has been a resurgence of

interest in certain aspects of the problem, first because of a

possible connection with a troublesome combustion instability in

liquid rocket engines, then as an important problem for the develop-

ment of ink-jet printers. These recent studies have focussed on the

breakup of a filament of Newtonian liquid issuing in a steady flow

from a nozzle with a superimposed sinusoidal fluctuation. Breakup

begins by the formation of a string of connected ellipsoidal drops a

wavelength anart. The ligament of fluid connecting adjacent drops may

consolidate with them upon final breakup or, under different con-

ditions, may form a separate, so-called "satellite" drop. Some strik-

-: ing photographs of this process are to be found in the literature

(e.g. Donnelly and Glaberson [1966]). Given the observation that as

drop formation progresses the wavelength is preserved, it is easy to

conclude that the drops would each be equal to the volume of a

wavelength of the original cylindrical jet were it not for the

possibility of formation of satellite droplets. The suppression of

these satellite droplets is of great importance in the design of ink-

jet printers.

It was recognized early in these studies that the formation of

droplets is inherently a nonlinear process. In an effort to take this

into account the stability analysis of Rayleigh has been generalized

by carrying the perturbation terms up to third order (Lafrance

[1975]). Taub [1976] has devised a clever optical measuring device

which he used to detect these high order terms in the early stages of

the process. There are few attempts to solve the full Navier Stokes

equations in this geometry. Commonly, some form of restricted one-

dimensional approximation is assumed which neglects troublesome terms.

Recent numerical studies often handle the nonlinearities more com-

pletely by using a one dimensional formulation by Bogy [1977] based on

the results of Green [1976] who applies Cosserat theory to the
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problem.

The observation that a small amount of high molecular weight

polymer dissolved in the liquid of the jet has a marked effect on the

breakup process has suggested further applications and aroused even

more interest in the problem. Demisting of aircraft fuels and the

atomization of fuels and other materials for dispersion can be

controlled in this way. A new element is added to the system because

the elastic forces induced by the polymer have a remarkable stabil-

izing effect on the breakup process. Experiments of Gordon, Yerushalim

and Shinnar [1973] show that with solutions of Separan and other

polymers the drops form regularly at the wavelength of the disturbance

just as with NewtonJan liquids but that the ligaments between drops

persist for a very much longer time. Consequently, the formation of

satellite drops is strongly influenced. Some striking photographs

illustrating the phenomenon are found in the paper mentioned.

Keunings [1984, 19861 has published a series of papers on a

two dimensional finite element calculation of this problem including

nonlinear viscoelastic effects. His method accomodates "rate-type"

models of liquids, that is, liquids for which the viscoelastic

stresses can be calculated from instantaneous kinematic quantities. He

compares the results for a Newtonian liquid and an Oldroyd-B fluid (a

generalization of the Maxwell model). Without serious modifications

Keunings' method does not seem suitable for dealing with materials

which require that the history of deformation be used for calculation

of the stress. Furthermore, the methods requires considerable computa-

tion time and the steady hand of an experienced numerical analyst.

Bousfield et al. [1984a,1984b,1986] have developed a one dimensional

system for rate type models and have compared their results with

those of Keunings. Their calculations for both Newtonian and Maxwell

model liquids, when they do not encounter convergence problems, are in

good agreement with the more complete calculations of Keunings. Their

equations do not include radial inertia effects.

The Maxwell model is a member of the class of materials which,

for sufficiently smooth histories, may be viewed as either of rate

type or of BKZ type. Therefore, Keunings' results for an Oldroyd-B

model can be used to test the validity of the method developed here, a

9



one dimensional approximation scheme designed to handle BKZ materials.

Similarly, the results of Bousfield et al. can also be compared

directly.

2. DESCRIPTION OF PROBLEM AND LAYOUT OF REPORT

Consider an infinite cylindrical filament of liquid at rest
and not acted on by gravity or otherwise accelerated. An internal

pressure will balance the forces of surface tension and the cylinder

will be in equilibrium. This equilibrium is not an energy minimum,

however, and is inherently unstable. If at time t=O we suddenly

* perturb the filament with a small, sinusoidal displacement along its

axis while setting the velocity and acceleration again eqLal to zero,

the disturbance will grow in time under the influence of surface

tension and viscoelastic forces. The periodicity of the deformation

will be preserved as the disturbance develops, droplets will form

regularly along the axis of the cylinder and ultimately they will

separate. It was our aim to model this process for a liquid of the BKZ

type for which the viscoelastic stresses depend upon the history of

the deformation in the neighborhood of a point. The works cited for

funings and for Bousfield et al also model this process but for rate-

type viscoelastic materials.

We begin by modeling the various forces acting on the fila-

ment; surface tension, viscoelastic forces and a pressure due to

radial inertia. These effects are presented in the three following

sections. In the sixth section an integrodifferential equation is

formed by equating the gradient of the sum of these forces to the

local axial acceleration of the cylinder. This equation and the

boundary and initial conditions are nondimensionalized. In section

seven some scaling and conditioning to prepare for the numerical

treatment of the equation and boundary conditions are explained . In

the eighth section a description of the algorithm for solving the

equation is presented, including some details of the method used for
numerical integration in calculating the viscoelastic force gradient.

* Section nine outlines the mechanics of using the Fortran program,
DROPGEN, listing the parameters that must be supplied and explaining

the form of the output. Section ten is a complete listing and a
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concise description of the quantities which are used in the program.

Section eleven presents the actual Fortran program DROPGEN and its

subroutines, DERIV, SLOPES and VBAND and section thirteen displays an

example of the printed output for a typical run of the program.

The first two appendices explain the Fortran subroutines;

DERIV and SLOPES, using the central difference method for approx-

imating derivatives, VBAND which solves a set of linear equations by

the inversion of a pentadiagonal matrix. The third appendix explains

the technique for extrapolating in time the kinematic quantities

needed for the predictor/corrector technique. The final appendix

sketches a method of calculating the viscoelastic force gradient which

does not require the cumbersome storing of a complete history of the

deformation and which is sometimes possible for certain types of BKZ

materials.

3. SURFACE TENSION FORCES

The net effect of the surface tension on a cross section of

the filament arises from two separate phenomena. There are surface

tension forces acting directly on the circumference of the cross

section and, in addition, the surface tension forces generate a pres-

sure, P , which acts on the cross section. This pressure may be found

by a method similar to that used by Avula (1973) for calculating the

static shapes of liquid drops. Envision the surface of the filament

ruled with circumferential and meridional coordinates and designate

the meridional coordinate as xi. Then xi is related to the radius R

and the axial position Z through the Pythagorean theorem on the dif-

ferentials, i.e.:

2 2 2
dZ +dR = d 2  (3.1)

Let K1 and K2 be the principal curvatures in the meridional and cir-

cumferential directions, respectively; then we can write

KI=-R /(I-R ) /  (3.2)

K2= (1-R) /2 /R (3.3)
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The surface tension acts as an elastic membrane on the curved surface

of the infinitesimal cylinder inducing a pressure, Pst' which acts on

the ends. This pressure is given by the following expression:

(K 1+K2 )= Pst (3.4)

where O is the surface tension (assumed constant and isotropic in the

surface). Upon substituting for the curvatures from equations (2) and

(3) into this expression, one obtains the following expression for the

pressure due to surface tension:

2 22/
P st (1-R -RR )/R(1-R$)1/2 (3.5)

We will need an expression for P in terms of Z rather than xi. Tost
change variables we use equation (3.1) to generate the transformation

equations.

2 1/2
R =R /(1+R (3.6)

z z

With these substitutions equation (3.5) transforms as follows:

Sst=(1+R2-RR 2)/R(I+R 2)3/2 (3.8)
stz z z

In general Pst is a function of Z but constant over a cross section.

The force on the cross section is then the sum of the direct

surface tension forces acting on the edge and the pressure acting over

the surface, that is:

I:- Fst=21R Q/ (I+R)1/2 P (3.9)
zst(3)

which becomes upon substituting for P from equation (3.8):

Fst=TURou'(1+R 2 +RR )/(I+R) 3/2 (3.10)

.. V1
N
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It is instructive to demonstrate equation (3.8) for the case

of a static spherical liquid drop of radius p under no external

forces. In that case R is given by the equation

R +Z =p (3.11)

and using this in equation (3.8) gives a constant pressure

P =2Q 1 (3.12)~st

which is a well known result. Furthermore, the force on any cross-

section of the static spherical drop is zero according to equation

(3.10) for the geometry of equation (3.11). This also is as it should

be.

4. VISCOELASTIC FORCES

The viscoelastic forces acting on a cross section of the fil-

ament arise from a stress induced by the history of deformation of the

material points of the cross section. A strictly accurate history of

deformation of a warping cross section requires huge quantities of

data but, fortunately, this is not necessary for our purposes. To

avoid the problem we assume that every cross section of the filament

always remains plane and perpendicular to the axis while deforming.

That is, we assume that within any cross section the stretching is

identical for every point. Such a deformation is necessarily purely

extensional. Of course this can not be true if there is any axial

dependence of the deformation. In such a circumstance compatibility

conditions will not be met. For our purposes, however, the approxima-

tion should be valid as long as the relative change in radius along

the axis is small with respect to one.

For a BKZ material in simple extension, the stress is calcu-

lated from the history of stretching at each material point. We con-

sider a particle of material at reference point Z0 on the axis of the

cylinder which is at point Z(Z0 ,t) at time t. The stretch relative to

Z0 is

13
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X(Z 0 ,t) z (4.1)
az0

The relative stretch from time 7" to t is then

X (z t).. , t)(4 2

X (Z 0 ,T)
The Cauchy stress, T, (true stress as opposed to engineering

or Piola stress) is given by an integral over the history of the

stretching:.4r

T(Z ,t)= (M( \(Z0; 7%t),t- ) a7 (4.3)

M is a constitutive function of the material. It is a function of the

relative stretch and of the time interval from a time in the past, ,
to the present time, t. Since the stress is assumed constant over a

cross section of the filament the net viscoelastic force acting on the

cross section is given by
£2k 2

Fve=lrR 2 T='7R 2  M (lZ0; T,t) t-*) dT* (4.4)

For BKZ materials in general, M is expressible in terms of the

stress relaxation function through its time derivative. If H is the

stress relaxation function, we can write

SM( \(Z 0; 7% t) ,t-7'I/=-H.((t,7),t- 7)

:': d(4.5)
H,(\,t)=dtH(X 1 t)

If we rewrite equation (4.4) in terms of the stress relaxation

function, H(,t), the equation takes on the following form:

Fve=R2H(X(Z0 t),t)-

(4.6)

.- rR 2  H((Z0;7 t ) ,t-7) d

14



For our sample calculation we will use a particularly simple

form of BKZ fluid, the Maxwell model. For this model we have

H(X,t)= GO0( X2 -1/X)/exp(att) (4.7)

i G plays the role of an infinitesimal shear modulus andyis the
0

reciprocal of a relaxation time.

Of course, it is possible to use any other form of BKZ fluid

simply by programming a suitable calculation of the stress gradient.A
* The Maxwell model is particularly useful as a test case because one

can compare results with the full two dimensional finite element cal-

culations of Keuning et al.

5. INERTIAL FORCES DUE TO RADIAL MOTION

The radial accelerations of an infinitesimal length of the

filament are determined by the axial stretching. The acceleration is
not constant over a cross section, however, and it generates a radial

pressure gradient. The axial variation of this pressure contributes to

the axial force acting on sections of the filament.

The radius of filament at any point is constrained by the

stretching on the axis and is given by the equation

1/2R(Z ,t)=R 0/(A(Z0,t))i (5.1)

where R0 is the radius of the unstretched filament and X (Z0,t) is the
stretch which is given by equation (4.1). This equation is a con-

sequence of the isochoric deformation imposed by incompressibility. A

similar equation holds for the radius of an arbitrary point on a cross

section, i.e.:

r(Z0,t)=r0/(,\(Z0,t)) I /2  (5.2)

0 0 0

where r and r0 have the obvious significance. The velocity and

acceleration in the radial direction can be calculated from this

15



equation by taking derivatives with respect to time. In the following

equations time derivatives are indicated by superposing a dot.

r= -(rA/ 2 A) (5.3)

"2 2

r= r(3 -2 A )/4 (5.4)

This acceleration generates a radial variation of the

pressure. If one calculates the the mass times the radial acceleration

of an element of material at radius r and equates it to the net radial

force on the element, one arrives at the following ordinary

differential equation for the pressure:

.v. d(rP *(r))-P (r) 2 '2-3')4 (5.5)
dr ri ri =p 'AAA5.A

The solution of this equation can be adjusted to contribute zero

pressure on the surface of the filament by adding an arbitrary

pressure constant over the cross section. The arbitrary pressure will

* include the pressure due to surface tension and the isotropic part of

the viscoelastic stress, both of which have been calculated seperately

and both of which are constant over a cross section. The contribution

of radial inertia to pressure is then given by:

P *i(r)= ( 2 AAX- 3 A X) (r 2-R')/8/J\ 2(5.6)~ri P56

A contribution to the force acting on a cross section of the filament

is found by integrating this pressure over the area of the cross

section. The force in the positive Z direction exerted by the material

on the positive side is given by:
- 9.

4 so x2
Fri 7 R (2 AA-3 /16 X (5.7)

- This force may be expressed in terms of the radius of the filament

through use of equation (5.1) to replace the time derivatives of the

16



stretch with those of the radius. When this is done, one arrives at

the following simple form:

~3 so
Fri(Z 0 ,t)=- 7tp R R /4 (5.8)

This result may be compared with a calculation of Green [1976]

in which, by means of a Cosserat model with two directors, he
formulates equations for a one-dimensional, straight jet of Newtonian

fluid. Green's results are expressed in laboratory coordinates rather

than the material coordinates we are using here, so that the

comparison is not immediate. The term of Green's equations which is

attributable to the effects of radial inertia has been isolated by

Bogy [1978] and can be written as follows:

F .(Zt)= rR 4(U +UU -- U )/8 (5.9)ri Zz- U) 5.2 Z

where U is the axial velocity of the cylinder expressed in laboratory

coordinates and the subscripts Z and t indicate differentiation.

This equation can be expressed in material coordinates by means of the

following transformation:

U(Z,t)=V(Z 0t)=Z(Z 0,t)

U =V-R 2VV (5.10)t Z0

2
U =R V ,etc.z z0

It is extremely gratifying that equations (5.9), when expressed in

material coordinates, is identical to equation (5.8).

There is a misprint resulting in the dropping of a factor v in the

*fourth term of equation (8) of Bogy [1978] which, if unnoticed, can be

9very troublesome.

17

-<. . .



6. FORMULATION OF THE BOUNDARY VALUE PROBLEM

6.1 The Differential Equation.

We can write a differential equation describing the dynamics

of the motion of the filament by collecting together the forces acting

along the axis on a cross section of the filament. We ignore the force

of gravity and all other body forces, although they can easily be

included. The following equation results:

a 2
S(F e+F st+F ri)=pR Z (6.1)

where the right hand side of this equation is the mass per unit length

times the acceleration of point Z on the axis of the cylinder and the

left hand side is the Z derivative of the net force in the axial

direction (positive toward increasing Z) on a cross section of the

filament. The equations for the various axial forces developed in the

three previous sections are to be substituted into the left-hand side

of this equation. When we have done so, the quantity pi may be

factored out and we obtain the following equation:

Z (R 2 T)+ (R(1+R 2+RR )/(+R 2) 3)-p ( R)3 p R z (6.2)
za z z zz 4Z

6.2 The Dimensionless Form of the Equation.

This equation has the physical dimensions of force per unit

length and thus it becomes dimensionless when we divide by the surface

tension, a. Each of the physical quantities appearing in this equation

can be expressed as a product of a corresponding nondimensional phys-

ical quantity and a dimensional constant formed of constant
3

fundamental parameters of the problem; for mass, p Ro; for length,

R 0; and for time, (PR0/C)I / . By this procedure we can replace each

variable of the equation with a dimensionless variable. For

convenience, to avoid introducing new symbols, we retain the symbol of

the dimensional quantity to represent the new dimensionless quantity.

Thus, we make the following substitutions:

18
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R-*RoR Z->R0 Z T-* -E T

R-* (0-/p R 0) R Z-* (alp R 0) z F-* UR 0 F

3 1/2 351/2 H (6.3)

t- 0(pR0 /U) t H0-(p R0 ) R 0 0

Z0 - R0 Z0  -*(O/p R3) 1/2 etc.

where the symbols to the left of the arrows represent dimensional

quantities which are represented in dimensionless form on the right by

the same symbols multiplied by a dimensional constant. In terms of these

dimensionless variables equation (6.2) takes on the following form:

2 a 2 2 3/2 1 3 . 2 ..
(T) + i R (+R+RRz)(1+R) )-111(R R=R Z (6.4)

For ease in calculating it is convenient to express the spatial

derivatives of this equation in terms of values at a reference configura-

tion fixed in the material, that is, it is convenient to transform to a

Lagrangian form. Accordingly, equation (6.4) becomesa a_ 2 /21a3_o
0 (T )+ ((1 R RR )/(R- Z ( R  R) Z(Z 0 ,t) (6.5)zo z zz z4 aZ0

where the derivatives of the radius are to be calculated from the follow-

ing equations:

2 3 2 4
R =RR , R =2R3R2+R4R (6.6)

*z z zz z z 0z0• 0 ZZ0 Z0Z0

For the Maxwell model we can replace the dimensionless stress

* of this equation, T, with the following expression:

T =C o H (Z 0;tT-1/ XlZ0;tr))/explO(t-*))] dr (6.7)
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where the rheological properties, modulus, GO, and reciprocal relaxation

time, , are in the nondimensional forms given by equations (6.3).

Equations (6.5), (6.6) and (6.7) combine to give the Lagrangian

form of the differential equation we are to solve. It is significant that

in this nondimensional form the only remaining physical parameters of the

equation are those introduced through the viscoelastic stresses.

6.3 Boundary Conditions and Initial Conditions.

In order to formulate a well posed mathematical problem we must

add to this differential equation some suitable boundary conditions and

initial conditions. The boundary conditions we shall use arise from the

symmetries imposed by the spatial periodicity of the solution. We choose
a length, L, to be the constant half period of the disturbance. The com-
plete solution to the boundary value problem is then taken to be the solu-

tion within this half period reflected about the end points. These condi-

tions are important in forming spatial derivatives at the ends of the half

period.

If we assume that the filament at time zero is at rest in a cylin-

drical configuration of long standing, it will be in a state of

equilibrium. Our analysis will predict no motion even though the

equilibrium is unstable. It is necessary to presuppose a small initial

perturbation as part of the initial conditions to start off the motion

towards drop formation. This disturbance is taken to be a small

sinusoidal displacement so that at time zero the stretch along the axis of

the cylinder conforms to the following equation:

A (Z ,0)=1-e 7cos(7R Z 0/L) (6.8)

We assume further that at time zero the local velocity is zero everywhere

so that all previous forces do not influence the subsequent motion. As a

result of these assumptions, the viscoelastic stress can be separated

into two parts, a contribution due to deformations from the original

equilibrium to the present configuration and a further contribution due

to deformations from the initial perturbation and subsequent config-

urations. Equation (6.7), when broken up in this way, takes on the

following form:
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T = G 0exp(-it) (X Z0,t)-1/ X(Z0t)+(6.9)

+IG 0exp (-oft)4 f ( X 2 ( Z0 ;tI Tr (Z 0;tr) ] exp¢ 7)d 7T
00

wherein the first term arises from the stretch calculated from the

initial to the present configuration. It is equal to the stress

relaxation we would have observed for a stress relaxation experiment

starting with the present stretch from time zero and held to the present

time. The second term is an integral over stretches from subsequent

configurations up to the present. The stretch,X(Z 0 ,t), and the relative

stretch, X(Z 0 ;t,T ), are defined by equations (4.1) and (4.2), respec-

tively.

Equations (6.5), (6.9) and initial conditions of equation (6.8)

with the boundary conditions imposed by periodicity constitute the system

we will attempt to solve by numerical methods.

7. SCALING AND CONDITIONING FOR NUMERICAL CALCULATION

A further change of variables is convenient (but not necessary)

in conditioning the differential equation for solution by the method of

finite differences. In imposing boundary conditions another length, the

half period, has been introduced into the problem. The differential equa-

tion describing the motion of the filament is independent of this length

*i and in no way implies a periodic solution. We are, in effect, selecting

from among the pool of solutions to the differential equation by imposing

this requirement. The boundary conditions appropriate to other problems

might not introduce such an extra length and, in that case, the further

change of variables described below might not be appropriate.

Because we will be calculating spatial derivatives using finite

difference methods, it is useful to divide the half period into a fixed

number of equal segments and to express distances along the axis of the
filament in terms of their ratio with the half period. Then the measure ofi
distance along the half period will range between zero and one,

independent of the particular half period we use. Plots of solutions for

different half periods can then be easily compared on the same scale. With

this convenience in mind, we introduce the ratio of the initial radius of
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the filament to the half period, K. We redefine the lengths along the axis

yet again in terms of the following dimensionless variables:

Z-*Z/K, Z 0-*Z 0/K, K=R 0/L (7.1)

where, as before, the quantities on the left of the arrows are to be

replaced by the quantities on the right throughout the equations and, in

the results, Z and Z0 are to be interpreted as ratios of axial distance to

half period. Equation (6.5) then takes tne following form:

'-S.'. (T/X)+

+- (R(1+K2R (3R +RR ))/(1+K2 R 4R ) )3/2 (7.2)
z z z z z

(JO 0 00 0 3 Z'a 3.". .. 2

-(R R) =Zz Zt) /K

In terms of these new variables the initial conditions and the

perturbation of equation (6.8) now take on the following simple forms:

Z(Z00)=Z0 - e sin( 7TZ 0 ), X(Z 0 ,0)=l -elrcos( Zo) (7.3)

The radial inertia term of equation (7.2) should be expressed in

terms of spatial derivatives of axial displacement, velocity and

acceleration. This can be done through the equation expressing the

incompressibility of the medium, equation (5.1), which leads to the

following:

__ 3.. 3 8 R 10 2 3 8(R R)= -R8Z A -- A -3R Z V +-R8V V
az 0  2 z0z0 z0 2 Z0 Z0  z0z0 Z0 2 z0 z0z0  (7.4)

where V=Z and A=Z.

Equation (7.2) then takes the following form:
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la 2 4 2 2 42 3/2
+ [R(1+K R (3R +RR Z ))1/(1+K R R ) 1+a 0  0 0 0 (7.5)

310 2 38
+-R Z V --R V V
4 Z 0Z 0Z 08 Z 0Z0Z=0

0zo0 z0 z0 00o

3 8 RA6K 2

-R Z A -- 6 +A/K
8 0 Z Z 08 Z0Z0

Equation (7.5) is in a form such that all terms in acceleration

appear on the right hand side only, while the left hand side is calculable

from the history of axial displacement (for calculating the viscoelastic

force gradient) and the axial displacement and velocity and their

derivatives. This form is suitable for numerical calculation using finite

difference methods for evaluating derivatives and integrating by use of

the trapazoid rule.

The half period L is divided up into N-i equal intervals

by distributing N nodes along the axis of the filament in its initial

equilibrium configuration. The nodes are fixed in the material and the

Ith node is characterized by Z (I), its original equilibrium position.
0

The quantities R, Z, V and A may be approximated, then, by N dimensional

vectors R(I) , Z(I) , V(I) and A(I) whose components are the values at each

node. The axial derivatives of these vectors are evaluated at each node by

using the five point central difference equations of Appendix A. The

stress gradient is calculated at each node by integrating in time using

the trapezoid rule. In this way, equation (7.5) may be interpreted as a

vector equation in the N dimensional space of nodes of the half period.

8. METHOD OF SOLVING THE INTEGRO-DIFFERENTIAL EQUATION

8.1 Integration of the Differential Equation.

The differential equation (7.5) is integrated in time by a method

which might be described as using a "predictor/corrector" method to march

in time. For the first step, the initial conditions give the displacement

and velocity of each node at time zero. The left hand side of the equation
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can be evaluated from these quantities and their axial derivatives which

are calculated by the methods of appendix I. The right hand side of

equation (7.5) involves the unknown acceleration and its axial deriv-

atives. Through the methods of appendix I this side may be expressed as an

NxN matrix acting on the unknown acceleration vector. Because we use the

fi',e point central difference approximations for calculating the

derivatives, the matrix is pentadiagonal, that is, the only nonzero

elements of the matrix are in a band of five central diagonals. The set of

N linear equations represented by the resulting vector equation can be

solved easily with the technique explained in appendix II. This procedure

can be used to calculate the acceleration at time zero.

With the acceleration at time zero we can estimate the initial

motion. For a first estimate we assume that the acceleration remains

constant and calculate for each node the corresponding displacement and

velocity at the end of some small interval of time. With these quantities

we can again use equation (7.5) in the same way as before to calculate a

new estimate of acceleration at the end of the time interval. We then

assume that the acceleration actually changed linearly in time from the

"" initial value to the average of the two estimated values. We again

calculate the corresponding displacement and velocity at each node and

then the acceleration at the end of the small time interval. If this third

estimated acceleration is not sufficiently close to the second estimate,

- • we continue the process of averaging estimates and calculating new

displacements, velocities and new estimated accelerations until two

wJ. 4 successive estimates of acceleration are sufficiently close to be

considered equal. At this point we judge the calculation to be acceptable

- and the latest values of the variables are assigned to the vectors

representing the physical quantities after one time step.

The next time step is calculated in the same way, except that for
the initial trial we estimate that the acceleration varies linearly in

time with a rate equal to the rate of the first time step. Subsequent

trials assume a quadratic variation of acceleration fitted to the values

. at the two earlier times and the average of the two latest estimates for

the value at the end of the time step.

.The thirO and subsequent time steps are intearated assuming a

quidratic variation of acceleration for the initial calculation and a

24

i' p

* -- '-o- - - *.,, **.. . .. ' 4 4~



cubic variation for calculations thereafter. In order to use this scheme

the Fortran program keeps track of the four values of acceleration at each

*node; for two time steps into the past, the present acceleration and the

current estimate for one step into the future. The appropriate

,. xtrapolations for acceleration, velocity and displacement in terms of

these values are given in Appendix C.

8.2 Evaluating the Integral.

In calculating the gradient of the viscoelastic force we must

perform an integration over the history of the deformation. For example,

in the case of the Maxwell model the gradient of the force can be written

as follows:

a T/ )=(i+2/ (Z0 t))X (Z0 ,t)exp(-Ct) +

+ C expl(-t) Q(Z 0 ;t, ) exp(f7-) d7 -
• . (8.1)

-a exp(-Ct) (Z 0;7,t) exp(CT)d 7

Z Viz0QOz;t,7 o7 )- +2, X z,7r )/XZ~ >Z ( t
0

The integrals of this equation are calculated by the Fortran

program using the trapezoid rule. To be able to do so, the program stores

the history of the displacement gradient and second derivative of

*displacement in the matrix EP. If no provision is made to discard old

history, after a large number of time steps this information will require

unacceptable amounts of storage. Fortunately, for any reasonable

material, configurations very long in the past no longer contribute

*. significantly to current stress. The program takes advantage of this

circumstance by providing a means to discard data after an arbitrary

number of time steps. This is accomplished by setting the value of the

parameter MO. After the matrix EP has been completely filled the new data
are inserted by replacing the oldest data. By using modular arithmetic

for setting the indices of EP the data can be appropriately located.
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9. HOW TO RUN FORTRAN PROGRAM DROPGEN

9.1 How to Set Parameters.

The program DROPGEN was developed on a Cyber 855 at the National

Bureau of Standards. It is written for a Fortran 77 compiler and should

run on most mainframe computers with suitable software. For any

interested researcher the author will cooperate in transferring a copy by

whatever means seems suitable.

DROPGEN is liberally annotated so that with a little patient

study its construction and method of calculation should become clear to

the reader. In preparing to run it, the parameters of a particular

calculation are inserted directly into the beginning of the program at

the places marked by comments. The number of nodes to be carried in the

calculation is set by the quantity NO and the size of the time steps is set

by DELT. Experience and some trial and error are called for in setting

these two parameters. Of course, the correct solution is independent of

. these quantities which have to do only with the numerical method.

However, if too many nodes are carried or the time step is too small, the

finite differences occuring in the calculations will suffer serious

round-off error; if too few nodes or too large a time step, the

calculation becomes too crude and results depend strongly on the choice

- of NO and DELT. In most cases, NO=20 and DELT=O.1 are good guesses for a
*first trial. In any event, DELT must be smaller than the shortest

relaxation time of importance. MEM is the length of the history of

deformation carried in the calculation and should be longer than the

longest significant viscoelastic relaxation time of the material. ITLIM

limits the number of iterations allowed in calculating a time step. It

serves to avoid the possibility of the calculation entering an infinite

loop and does not affect a correct calculation in any way. Ordinarily,

setting ITLIM=25 is convenient. The computation proceeds for a number of

*time steps determined by NTS. In some cases, however, the calculations

lead to a sharp singularity in the surface of the jet followed by failure

of the computation and termination before the requested number of time

steps.

The mechanical parameters of the problem are set in a straight-
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forward way. PTB is set to the amplitude of the sinusoidal

perturbation and RRHP to the ratio of the radius of the original

cylindrical jet to a half-period of the disturbance. The parameters of

the Maxwell model are set by GO and ALPHA. All sections depend on the

BKZ model are marked off in DROPGEN by dotted lines so that it is

convenient to modify the program to accomodate BKZ models with various

kernal functions.

The parameter INTRVL controls the output of the DROPGEN by

determining the number of time steps in the intervals between printed

results.

9.2 How to Read the Printout.

A sample printout of DROPGEN appears in section 12. of this

report. It begins with a self-explanatory listing of the values of the

parameters for the calculation and a display of the radius, Z

coordinate and viscoelastic stress at the time of the initial

perturbation. Following this, the evolution of the jet is displayed by

tablulations of the conditions at time intervals determined by the

parameter INTRVL. Each tabulation is headed by a listing of the time

lapse since perturbation and two indicators of the quality of the

calculation. ITER indicates the maximum number of iterations needed in

calculating the tme step. If ITER is equal to ITLIM then BADFIT

indicates the number of nodes for which the accuracy criterion was not

met even after ITLIM iterations. If BADFIT is not zero the calculation

of that and subsequent time steps can not be trusted. The first three

columns of the tabulation give the radius, Z coordinate and stretch,

respectively at each node of the jet. The next three columns give (in

order) the viscoelastic force gradient, surface tension force gradient

and the gradient of the velocity-dependent terms of the force due to

radial inertia. These quantities help one to understand the physics of

the situation by indicating the relative importance of the various

influences. The final two columns of the tabulation give the computed

acceleration of each node and the difference between the computed arid

projected acceleration.
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10. LIST OF SYMBOLS IN PROGRAM DROPGEN

AEST(I) A projection one time step into the future of the
acceleration at a node based on a polynomial fit to
the past accelerations. This projection is averaged
with AX(I) to estimate AF(I).

AF(I) The acceleration of the Ith node at one time step into
the future.

FPI,FPJ1,FPL Floating point equivalents of indices I,J1,L.

ALPHA The reciprocal of the dimensionless relaxation time of
a Maxwell model. (see equation (6.3))

AO(1) The old acceleration of the Ith node at two time steps
into the past.

AP(I) The present acceleration of the Ith node.

AR(I) The recent acceleration of the Ith node at one time
step into the past.

AX(1) The acceleration of the Ith mode extrapolated one time
step into the future.

BADFIT A count at each time-step of the nodes for which the
iteration scheme does not converge sufficiently within
ITMAX iterations.

BKZ(I) The gradient of the BKZ viscoelastic force at the Ith
node. An exception occurs in the routine for printing
out the initial conditions when this variable is
temporarily used to store viscoelastic force.

C(IJ) A six by NO matrix representing, in compact form, a
finite difference operator corresponding to equation
(7.5). C contains the coefficients of a pentadiagonal
NOxNO matrix and a lxNO vector of the inhomogeneous
terms and it operates on the vector AX.

DELT The size of a time step.

DELTA(I) A coefficient vector used in subroutine VBAND.

DELZ The space between nodes as a fraction of the half-
period

of the perturbation.

DSPLP(I) The present displacement of the Ith node.

DSPLR(I) The displacement of the Ith node one time step into
the past.
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E(I,J) The Ith derivative of Z w.r.t. ZO at the Jth node at
the present time.

EP(I,J,K) The Ith derivative of Z w.r.t. ZO at the Jth node at
the Kth time step. The history of the deformation of
the material is stored in EP.

EPSIL(I) A coefficient vector used in subroutine VBAND.

F1,F2 Auxiliary quantities used in calculating the radial
acceleration term.

G(I) An auxiliary vector used in the subroutines.

GAMMA(I) A coefficient vector used in subroutine VBAND.

GO The dimensionless, infinitesimal, instantaneous shear
modulus of a Maxwell model. (see equation (6.3))

I,J,J1,K,L Integer indices for Fortran DO loops.

INTRVL The number of time steps elapsed between printing out
the results of calculation.

ITER The number of the current iteration.

ITLIM The limit on the number of iterations allowed in
calculating a time step at a node.

M1 The total number of time steps set in calculating a
stress integral by trapezoid rule.

MEM The number of memory steps to be carried in evaluating
the stress integral.

NO The number of nodes.

NTS The number of time steps to be calculated.

PTB The amplitude of the initial perturbation.

Q A marker which keeps track of time intervals into the
past during the evaluation of the visco-elastic stress
integral.

R(I) The radius at the Ith mode.

RA An auxiliary quantity for calculating radial inertia.

* RI(I) The sum of radial inertial terms which depend on
gradients of the velocity
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RRHP The ratio of radius of the equilibrium cylinder to the

half-period of the disturbance.

RZ,RZZ,etc. The derivatives of radius w.r.t. spatial position.

S(I,J) The Ith derivative of the velocity of the Jth node
w.r.t. ZO.

S1 Term to be summed in using trapezoid rule to evaluate

integral.

SFT(I) The gradient of the force due to surface tension.

STRCH(I) The stretch at the Ith node.

SUM The partial sum during the evaluation of an integral.

T The present time.

T1,T2,T3,TRI Temporary storage and for scratch pad usage.

TAU The time interval into the past at each step of
evaluating the stress integral by trapezoid rule.

.4 VP(I) The present velocity of the Ith node.

VR(I) The recent velocity of the Ith node one time step into

the
past.

W(I) An auxiliary vector used for scratch purposes.

"- XI(I) A coefficient vector used in subroutine VBAND.

ZO(I) The axial position of the Ith node in the equilibrium
cylinder; a material label of the Ith node.
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LISTING OF FORTRAN PROGRAM DROPGEN

PROGRAM DROPGEN

C A FINITE DIFFERENCE PROGRAM TO CALCULATE THE FORMATION OF
C DROPLETS IN A JET DUE TO THE COMBINED EFFECTS OF INERTIA,
C SURFACE TENSION AND BKZ TYPE NONLINEAR VISCOELASTICITY.
C THE JET IS MODELED AS AN INFINITE CYLINDER SUDDENLY PERTURBED
C BY A SMALL SINUSOIDAL DISTURBANCE. A SECTION OF JET A HALF
C WAVELENGTH LONG REPRESENTS THE EVOLUTION OF THE WHOLE JET.

C SET PARAMETERS HERE

C NO IS NUMBER OF NODES
C NTS IS NUMBER OF TIME STEPS TO BE CALCULATED
C MEM IS LENGTH OF MEMORY TO BE CARRIED (NUMBER OF TIME STEPS)
C ITLIM IS LIMIT ON NUMBER OF ITERATIONS ALLOWED

PARAMETER(NO=21,NTS=450,MEM=200,ITLIM=25)

DIMENSION ZO(NO),DSPLR(NO),STRCH(NO),BKZ(NO),R(NO),W(NO)
DIMENSION VR(NO),VP(NO),AP(NO),SFT(NO),E(4,NO),G(NO)
DIMENSION AO(NO),AR(NO),EP(2,NO,MEM),AEST(NO),AF(NO)
DIMENSION S(2,NO),C(6,NO),RI(NO),AX(NO),DSPLP(NO)
DIMENSION GAMMA(NO-2),DELTA(NO-2),EPSIL(NO-2),XI(NO-2)

C MECHANICAL PARAMETERS
C DELT IS SIZE OF TIME STEP
C PTB IS AMPLITUDE OF PERTURBATION
C RRHP IS RATIO OF RADIUS TO HALFPERIOD
C BEWARE OF INTEGER DIVISION! ALL ENTRIES WITH DECIMAL POINT.

DELT=O.1
PTB=0.01
RRHP=1.0/20.0

C- ---------------------------------------------------------------
C BKZ PARAMETERS

C 1/ALPHA IS HALF-LIFE OF STRESS RELAXATION
C GO IS YOUNG'S MODULUS
C BEWARE OF INTEGER DIVISION! ALL ENTRIES WITH DECIMAL POINT.

ALPHA=0.5
GO=0.2

C- --------------------------------------------------------------

C INTRVL IS NUMBER OF TIME STEPS BETWEEN PRINT-OUTS
INTRVL = 15

C PRINT OUT PARAMETERS
OPEN(6,FILE='TAPE6')
WRITE(6,73)
WRITE(6,83) NO,NTS,MEM

83 FORMAT(3X,I4,6X,I4,11X,I4/)
73 FORMAT(5X,'NODES',5X,'NO. TSTEPS',4X,'MEMORY')



-

WRITE(6 .250)
250 FORMAT(5X.'G0',7X.'ALPHA'.5X,'RAD'HALFP',6X,'DELT',5X.'PERTURB')

WRITE(6 .260) G0,ALPHA,RRHP,DELT,PTB
260 FORMAT(1X,F8.4,2X,F9.3,3XF8. 5,7X.F6.4,3X,F6.4,3X,F5.2/)
C HEADING FOR INITIAL CONDITIONS PRINT OUT

WRITE(6.*) 'STARTING CONDITIONS'
WRITE(6 .200)

200 FORMAT(3X.'RADIUS',5X.'Z COORD',4X,'STRESS')
C PUT IN INITIAL DISTURBANCE

DO 20 I=1.NO
FPI=I
AR(I)=0. 0
AO(I)=0.0
VR(I)=0. 0
DELZ=1 .0/(NO-1)
Z0(I)=DELZ* (FPI-1 .0)
PI-3.1415926535898
DSPLP(I)=-PTB*SIN(PI*ZO(I))
DSPLR(I)=DSPLP(I)
VP(I)=0.0
STRCH(I)=1 .0-PI*PTB*COS(PI*Z0(I))

C -- - - - - - - - - - - - - - - - - - - - -
C CALCULATE INITIAL STRESS

R(I)=1 .0/SQRT(STRCH(I))
BKZ(I)=STRCH(I)* *2..1 .0/STRCH(I)

C -- - - - - - - - - - - - - - - - - - - - -
C PRINT OUT INITIAL CONDITIONS

WRITE(6,210) R(I) ,Z0(I)+DSPLR(I) ,BKz(I)
210 FORMAT(2X,F8.6,2X,F8. 5,2X,F1O.6)
20 CONTINUE

C CALCULATE INITIAL ACCELERATION

C CALCULATE SURFACE TENSION TERM
CALL DERIV(DSPLP,NO,E)
DO 30 I=1,NO
EP(1,I, 1)=E(1,I)
EP(2,I,1)=E(2,I)
RZ=-R(I)*E(2, 1)/(2. 0*E(1 ,I)* *2)

RZZ=RZZ/(4.0*E(1 ,I)**4)
RZZZ=34.0*E(1 ,I)*E(2,I)*E(3,I)-45.0*E(2,1)**3
RZZZ=R(I)*(RZZZ-.4.0*E(1,I)**2*E(4, I))/(8.0*E(1,I)**6)

T3=SQRT( 1+RRHP* *2*RZ* *2)
T2=RZ/T3
T2=T2+RRHP**2*R(I)*(RZ*RZZ+R(I)*RZZZ)/T3**3
T2=T2-3. 0*RRI{P* *4*R(I)* *2*RZ*RZZ* *2/T3**5
T2=E( , I)*T2

C -- - - - - - - - - - - - - - - - - - - -
C CALCULATE VISCOELASTIC FORCE GRADIENT

Tl=(1. 0+2 .0/E( 1, I)* *3)*E(2,I) *GO*RRH.P* *2
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C

C CALCULATE INITIAL ACCELERATION
AR(I)-O.O
AP(I)-TI+T2*RRHP**2

30 CONTINUE

C DO A TIME STEP
DO 50 JI=INTS

C SET LENGTH OF FINITE MEMORY
J=MOD(Jl-IMEM)+I

C CALCULATE TIME
FPJ1=JI
T=DELT*FPJ1

C CALCULATE STRETCH

ITER=-I
C ENTRY FOR ITERATION
816 BADFIT=O

ITER=ITER+I
INDEX=ITER-1
CALL DERIV(DSPLP,NO,E)

DO 60 I=1,NO
C RECORD HISTORY OF STRETCH AND GRADIENT (IN MATRIX EP)

EP(2,I,J)=E(1,I)
EP(2,I,J)=E(2,I)

C CALCULATE STRETCH AND RADIUS
STRCH(I)=E(1,I)
R(I)=1.0/SQRT(E(1,I))

C
C CALCULATE BKZ FORCE GRADIENT

TR1=EXP(-ALPHA*T)*(1.0+2.0/E(1,I)**3)*E(2,I)
C SET NUMBER OF STEPS OF MEMORY TO BE INCLUDED

IF (JI.LT.MEM) THEN
MI=J-1
ELSE
MI=MEM-1
ENDIF

C INTEGRATION USING TRAPEZOIDAL RULE
SUM=0.0
DO 70 L=1,Ml

C SET Q TO EXTRACT DATA IN PAST FROM EP
Q=MOD(MEM J-L-1,MEM)+I

EL1=EP(1, I,Q)
EL2 =EP(2,I.Q)
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FPL-L
TAU =DELT *F PL
Sl=(1 .0/EL1* *2+2.0*ELl,'E(1 ,I)**3)*E(2,I)
SI=Sl-(1.0/E(1,I)**2+2.0*E(1,I),/EL1**3)*EL2
S1=51 4EXP( -ALPHA*TAU)

IF(L.NE.1) GO TO 80
SUM=SUM+Sl
GO TO 70

80 IF(L.NE.Ml) GO TO 90
SUM=SUM+Sl
GO TO 70

90 SUM=SUM+2.0*Sl
70 CONTINUE

BKZ(I)=TR1.SUM*DELT/2.0
60 CONTINUE
C---------------------------------------------------

C CALCULATE RADIAL IN4ERTIA TERM

CALL SLOPES(VP,NO,S)

DO 197 K=1,NO
C(1,K)=0.0
C(2,K)=0.0

V C(3,K)=0.0
C(4,K)=0.0
C(5,K)=0.0
C(6,K)=0.0
F1=3.0*E(2,K)*RRHP**2/(8.0*E(1,K)**4*DELZ)
F2=-RRHP**2 (8.0*E(1,K)**3*DELZ**2)
IF (K.EQ.1) THEN
C(3, 1>=1.0-Fl*7.0/6.0
C(4, 1>4.0*Fl/3 .0
C(5, 1)=-Fl'6.0
ELSE IF (K.EQ.2) THEN
C(2 ,2)=7. 04 F2/6 .0-Fl/2. 0

C(4,2)=2.0*Fl/3.0+4. 0*F2/3.0
C(5. 2)=-(Fl+F2) /12.0
ELSE IF (K.EQ.NO) THEN
C(1,NO)=Fll'6.0
C(2,N0)=-4.0*Fl/3.0
C(3 ,NO)=1 .0+7. 0*Fl/6.0
ELSE IF (K.EQ.NO-1) THEN
C(1.NO-1)=(Fl-F2)/12.0
C(2,N0-1>=4.0*F2/3.0-2.0*Fl/3.0

C(4,N0-1)=Fl/2.0+7.0*F2/6.0
ELSE
CK)=( F1-F2)/12 .0

C(2,K)=(4.0*F2-2.0*Fl)/3.0
C(3,K)=1 .0-5.0*F2/2.0
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C(4,K)=(4. 0*F2+2 .0*Fl)/3.0
C(5 ,K)=-(F1+F2)/12 .0
ENDIF

C VELOCITY DEPENDENT RADIAL INERIA TERMS
RA=-6.0*S(1,K)**2*E(2,K)/E(1,K)**5
RA=RA+3.0*S(1,K)*S(2,K)/E(1,K)**4

RI(K)=RA*RRHP* *2/8.0

197 CONTINUE

C CALCULATE SURFACE TENSION FORCE GRADIENT
DO 110 I=1,NO

RZZ=R(I)*(5.0*E(2,I)**2-2.O*E(1,I)*E(3,I))
RZZ=RZZ/(4. O*E( 1, I)* *4)
RZZZ=34.0*E(1,I)*E(2,I)*E(3,I).-45.0*E(2,I)**3
RZZZ=R(I)*(RZZZ-4.0*E(1,I)**2*E(4, I))/(8.0*E(1,I)**6)

T3=SQRT( 1+RRHP* *2*RZ* *2)
T2=RZ/T3
T2=T2+RRHP**2*R(I)*(RZ*RZZ+R(I)*RZZZ)/T**3
T2=T2-3.0*RRHP* *4*R(I)* *2*RZ*RZZ* *2/T3* *5
T2=E(1 ,I)*T2

C CALCULATE SIXTH COLUMN OF CMAT
Tl=BKZ(I)*GO*RRHP* *2
SFT(I)=T2*RRHP* *2
C(6,I)=Tl+T2*RRHP**2-RI(I)

*110 CONTINUE

* C INVERT GMAT TO GET NEW ACCELERATION
CALL VBAND(C,NO,AX,GAMMA,DELTA,EPSIL,XI)

C RECALCULATE VELOCITY AND DISPLACEMENT

C FOR EACH TIME STEP, THE FIRST ESTIMATE (ITER=O) OF
C ACCELERATION, AEST, IS AN UNAVERAGED PROJECTION.

DO 999 I=1,NO

*C FIRST TIME STEP
IF (Jl.EQ.1) THEN

IF (ITER.EQ.0) THEN
AEST(I)=AP(I)

ELSE
AEST(I)=AF(I)

ENDIF

* AF(I)=(AEST(I)+AX(I) )/2.0
VP(I)=VR(I)+AF(I)*DELT
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DSPLP(I)=DSPLR(I)+DELT*VR(fl)DELT**2*AF(I)/2.0

C SECOND TIME STEP
ELSE IF (JI.EQ.2) THEN

IF (ITER.EQO0) THEN
AEST(I)=2.O*AP(I)-AR(I)

ELSE
AEST( I)=AF( I)

ENDIF

AF(I)=(AEST(I)+AX(I))/2 .0
VP(I)=VR(I)< 13.0*AP(I)-2.O*AF(I)-5.O*AR(I))sDELT/6.O
DSPLP(I)=26.0*AP(I)-9. 0*AR(I)-50*AF(I)
DSPLP( I)=DSPLR(I)+DELT*VR(I)+DELT* *2*DSPLP(I)/24.0

C THIRD AND SUBSEQUENT TIME STEPS
ELSE

IF (ITER.EQO0) THEN

ELSE
AEST(I )=AF(I)

* ENDIF

AF(I)=(AEST(I)+AX(I) )/2.0
VP(I)=9. 0*AF( I)+AO(I)-5 .0*AR(I)+19.0*AP(I)
VP(I)=VR(I)*DELT*VP(I)/24.0
DSPLP(I)=38.0*AF(I)+7.0*AO(I)-36.O*AR(I)+171.0*AP(I)
DSPLP(I)=DSPLR(I)±DELT*VR(I)+DELT**2*DSPLP(I)/360.0

ENDIF

C CHECK ACCURACY OF PREDICTIONS
C TO AVOID DIVISION BY ZERO

IF ((I-1)*(NO-I).EQ.O) GO TO 999

C CRITERION FOR GOOD FIT
IF (ABS(AX(I)IAEST(I)-l.0).LT.O.00001) GO TO 999

C COUNT THE NODES WITH BAD PREDICTIONS
BADFIT = BADFIT + 1

999 CONTINUE
C LIMIT NUMBER OF ITERATIONS TO AVOID INFINITE LOOP

IF (ITER.GT.ITLIM) GO TO 500
C IF PREDICTED ACCELERATIONS ARE NOT ACCURATE AT ANY NODES, ITERATE

IF (BADFIT.GT.0) GO TO 816
500 CONTINUE

C RESET KINEMATIC QUANTITIES
C RESET ACCELERATIONS
C AO-OLDEST. AR--RECENT, AP-PRESENT, AF-FUTURE

DO 111 I=1,NO
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AO(I)-AR(I)
AR(I)-AP(I)
AP(I)-AF(I)

C RESET V AND H
C DISPLACEMENTS, DSPLP-PRESENT. DSPLR-RECENT
C VELOCITIES. VP-PRESENT, VR-RECENT

W(I)=DSPLR(I)
VR(I)=VP(I)
DSPLR(I)=DSPLP(I)

ill CONTINUE

C PRINT OUT RESULTS

IF(MOD(Jl,INTRVL).NE.0) GO TO 50
IBAD=BADFIT
WRITE(6,271) T,ITER,IBAD

271 FORMAT(/3X,'TIME=',F9.5,3X,'ITER=',I4,3X,'BADFIT=',I5)
WRITE(6,40)
SFT(1)=O.0
SFT(NO)=D.O

-: DO 293 I=1,NO
WRITE(6,230)R(I) ,ZO(I).W(I),STRCH(I),BKZ(I),SFT(I)/RRHP**2,-RI(I)

+ ,AEST(I) ,AX(I)-AEST(I)
293 CONTINUE
50 CONTINUE

GO TO 400
40 FORMAT(3X.'RADIUS',4X,'Z COORD',5X,

+ LAMBDA',2X,'FORCE GRAD',3X,'SRFTEN GRD',3X,'RAD INRT',
+5X, 'AEST',5X, 'A-AEST')

230 FORMAT(2X,F8. 5,2X,F8.5,3X,F7. 5,3X,F1O.5,2X,
+FlO.5, 2X, F8 .5,2X, F9. 5, 2X ElS.6)

400 CONTINUE
STOP
END

C SUBPROGRAM DERIV
C CALCULATES THE DERIVATIVES OF Z WRT ZO USING
C FIVE POINT CENTRAL DIFFERENCES.

SUBROUTINE DERIV(G ,NO,E)
DIMENSION G(*),E(4,*)
DELZ=1 .0/(NO-1)

2 DO 7 I=1.NO
IF (I.EQ.1) THEN

E(2,I)=0
E(3.I)=(G(3)-G(l)-2.O*G(2)), DELZ'*3
E(4,I)=0

ELSE IF (I.EQ.2) THEN

37

b b * . .



E(2. I)=(16-.O*G(3>-14.O*G(l)-G(4)-29.O*G(2))/(12.O*DELZ* *2)
E(3,I) (G(4>G(2)-2.O*G(3)) '(2.o*DELZ**3)
E(4. I)=(G(4)>2. 'G( 1 )-5 . *G(2)-4. O*G(3) )/DELZ**4

ELSE IF (I.EQ.NO) THEN
E(1.I>=j7.O*G(NO)-8.O*G(NO-1)+G(NO-.2))/(6.O*DELZ)±1
E(2.I)=O

* E(3.I)=(2.O*G(NO-1)-G(NO)--G(NO-2)) DELZ**3
E(4.I)=O

ELSE IF (I.EQ.NO-l) THEN

E(2. I)E(2,I),'(DELZ*DELZ)
E(3,I)(.*(O2- O1-GN-)/20DL*3
E(4.I)( *(O 1 -. *(0 + (N -)4 0G N -)/E Z *

ELSE

E(2,I)=E(2,I),(DELZ*DELZ)

ENDIF
7 CONTINUE

RETURN
END

*C SUBPROGRAM SLOPES
C CALCULATES THE FIRST AND SECOND DERIVATIVES
C OF V WRT ZO USING FIVE POINT CENTRAL DIFF.

SUBROUTINE SLOPES(G,NO,E)
DIMENSION G(*)LE(2,*)
DELZ=K .O/(NO-1)

DO 7 I=1,NO
IF (I.EQ.1) THEN

E( 2,1)=-O

ELSE IF (I.EQ.2) THEN

E(2. I)=(16.O*G(3)+14.O*G(l)-G(4)-29.O*G(2))/(12.O*DELZ**2)

ELSE IF (I.EQ.NO) THEN

E( 2,1) O

* ELSE IF (T.EQ.NO 1i) THEN
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E(1,I)-(6.O*G(NO)-8.O*G(NO-2)+G(NO-1)+G(NO-3))/(12.O*DELZ)
E(2,I)=(14.0*G(NO)+16.0*G(NO-2)-G(NO-3)-29.O'G(NO-1))/12.0
E(2. I)=E(2. I)/(DELZ*DELZ)

ELSE

E(2,I)=E(2,I),/(DELZ*DELZ)

ENDIF
7 CONTINUE

RETURN
END

C SUBPROGRAM VBAND
C SOLVES A SYSTEM OF INHOMOGENEOUS LINEAR EQUATIONS WHICH
C ARE GIVEN IN TERMS OF A FIVE-DIAGONAL NOXNO MATRIX OF
C COEFFICIENTS. THE MATRIX C(6,NO) CONTAINS THE COEFFICIENTS
C OF THE SYSTEM AUGMENTED BY A VECTOR OF INHOMOGENEOUS TERMS.

SUBROUTINE VBAND(C,NO ,A,G,D, E,XI)

DIMENSION C(6,*),A(*)

DIMENSION G( *) ,D( *) ,E( *) ,XI( *)

C CALCULATE XIGAMMA ,DELTA, EPSILON

XI(1)=C(3, 1)
G(1)=C(6, 1)/XI(l)
D(1)=-C(4, 1)/XI(l)

DO 73 =3,NO-2 ,)-(,2*(41

D(I)=(D(I,)C51(,)C(4,I))/XI(
E(I)=-C(5,1I> X(I,)/I2

DO37 CONTINUE

CCACULTE (NOI) AND(O-1)DI24(-)

P1 C(,O)-C(1 ,N)*(NOI2)+DI2*(-)

Q1I=(NC(1 ,NO-)*E(O-2)+C2I*(-

C CACLT A(NO AND A (N CC{ -:..-



Rl=C(6,NO )-C( 1, NO )*NO-2)

P2=C(3,NO-1)+C(2,NO-1)*D(NO-2)
P2=P2+C(1,N )((O3+DN-)DN-)
Q2=C(4,NO-1)+C(2,NO-1)*E(NO-2)
Q2=Q2+C(1,NO-1)*D(NO-3)*E(NO-~2)

DENOM=(Pl*Q2-~Ql*P2)
A(NO)=(Pl*R2-~P2*Rl) "DENOM
A(NO-1 )=(R1 *Q2-Q1 *R2) 'DENOM

C CALCULATE A(I) FOR I LESS THAN NO-.

DO 75 I=NO-2,1,-1
A(I)=G(I)±D(I)*A(I+1)±E(I)*A(I+2)

75 CONTINUE

RETURN
-A END
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12. A SAMPLE PRINTOUT OF PROGRAN DROPGEN

NOOES NO. TSTEPS MEMORY
21 150 1

Ge ALPHA RAD/HALFP DELT PERTURB
.2000 .500 .05000 .3000 .0100

STARTING CONDITIONS
RADIUS Z COORD STRESS
1.016088 .0e00 -.094280
1.015885 .e4844 -.093118
1.815282 .09691 -.089662
1.814297 .14546 -.083998
1.012955 .19412 -.076265
1.011296 .24293 -.066654
1.009363 .29191 -.055404
1.87208 .34109 -.042791
1.804890 .39049 -.029125
1.002466 .44012 -.014744
1.000000 .49000 .000000
.997552 .54012 .014744
.995181 .59049 .e29125
.992944 .64109 .042790
.990893 .69191 .055404
.989074 .74293 066654
.987529 .79412 .076264
.986291 .84546 .083997
.985387 .89691 089661
.984837 .94844 .093116
.984653 1.00000 094278

TIME= 6.00000 ITER- 10 BADFIT- 0
RADIUS Z COORD LAMBDA FORCE GRAD SRFTEN GRD RAD INRT AEST A-AEST
1.01750 .00000 .96590 .00000 .o000 .00000 .. 00 eOOOOOE+0
1.01728 .04832 .96632 .00540 -.00847 .00000 -.0002 .151845E-09
1.01662 .09668 .96756 .01063 -.01671 .0000 -.00004 .297608E-09
1.01555 .14513 .96960 .01553 -.02451 eeeee -.00005 .431535E-09
1.01410 .19369 .97239 .01996 -.03166 eeeee -.00007 .548515E-09
1 .1230 .24241 .97585 .02379 -.03796 .00000 -. 0008 .644386E-09
1.01020 .29131 .97992 .02692 -.04327 .00000 -.00009 .716194E-09
1.00785 .34043 .98448 .02925 -.04744 .00000 -.00010 .762368E-09
1.00533 .38978 .98942 .03075 -.e5038 eeee -.00011 .782802E-09
1.00269 .43939 .99463 .03140 -.05203 eee -.00011 .778788E-09
1.00001 .48926 .99998 .03123 -.05237 .00000 -.0e11 .752813E-09
.99735 .53939 1.00532 .03027 -.05141 .00000 -.00011 .708231E-e9
.99477 .58978 1.A1054 .02859 -.04920 .0000 -.00011 .648868E-09
.99234 .64042 1.01549 .02629 -.04581 eeeo -.00010 .578609E-e9
.99011 .69130 1.02007 .02344 -.04136 .0000 -.00009 .501034E-09
.98814 .74240 1.02414 .02016 -.03596 .00000 -.eee8 .419153E--09
.98647 .79368 1.02763 .01652 -.02976 .eoooe -.eee07 .335247E-e9
.98513 .84512 1.A3043 .01261 -.02290 .00000 -.00005 .258837E-09
.98415 .89668 1.03248 .00851 -.01554 .00000 -.00003 .166735E-09
.98355 .94832 1.03373 .00428 -.00786 .0000e -.00002 .831794E-10
.98335 1 .00000 1.03415 .00000 .0000e .eeeee .00000 .OOOOOOE+00

TIME- 12.0000 ITER- 11 BADFIT- 0
RADIUS Z COORD LAMBDA FORCE GRAD SRFTEN GRD RAD INRT AEST A-AEST
1.02579 .00000 .95034 .00000 .e0e .00000 .eeeee .OOeOOOE+e
1.02546 .04759 .95096 .01026 -.01272 .o0000 -.ee3 .245825E-09
1.02447 .09523 .95279 .02012 -.02507 .eeeee -.00005 .479344E-09
1.02286 .14300 .95580 .02919 -.03671 .eeeee -.00008 .689181E-09
1.02067 .19093 .95991 .03715 -.04731 .000 -.eeele .865748E-09
1.01796 .23910 .96502 .04371 -.05656 eeeee -.00012 .100196E-e8
1.01483 .28753 .97099 .04868 -.06422 .00000 -.00014 1e9371E-08
1.01135 .33628 .97769 .05193 -.07009 .00000 -.00015 .114014E-08
1.00762 .38536 .98493 .05344 -.07403 .00000 -.00016 .114345E-08
1.00375 .43481 .99254 .05330 -.07600 .0000 -.00016 .110851E-08
.99984 .48463 1.00031 .05165 -.07598 .eeee -. ee16 1e4215E-08
.99600 .53483 1.00805 .04871 -.07405 .eeeee -.0ee16 .952214E-09
.99231 .58541 1.01557 .04473 -.07034 eee -.00015 .846686E-09
.98885 .63635 1.02267 .03997 -.06502 .00000 -.00014 .732E25E-09
.98572 .68762 1.02919 .03467 -.05828 .8000 -.00013 .616568E-09
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.98296 .73919 1.03498 .02905 -.05033 .00000 -.00011 .502198E-09

.98063 .79102 1.03989 .02326 -.04140 .00000 -.00009 .392282E-09

.97878 .84307 1.04383 .01742 -.03171 .00000 -.00007 .287820E-09

.97743 .89528 1.04671 .01159 -.02145 .00000 -.00005 .188536E-09

.97662 .94761 1.04846 .00578 -. 01081 .00000 -.00002 .932062E-10

.97635 1.00000 1.04904 .00000 .00000 .00000 .00000 .0O000E+00

TIME- 18.00000 ITER- 12 BADFIT- 0
RADIUS Z COORD LAMBDA FORCE GRAD SRFTEN GRD RAD INRT AEST A-AEST
1.04545 .00000 .91495 .00000 .0000 .00000 .00000 OOOOOOE+00
1.04483 .04589 .91602 .02443 -.02312 .00000 -.00005 .326180E-09
1.04301 .09187 .91923 .04770 -.e4551 .00000 -.00009 .631048E-09
1.04003 .13807 .92449 .06875 -.06647 .00000 -.00013 .895335E-09
1.03602 .18457 .93168 .08661 -.08534 .00000 -.00017 .110367E-08
1.03109 .23146 .94060 .10055 -. 10151 .00000 -.00020 .124606E-08
1.02542 27882 .95104 .11007 -. 11449 .00000 -.00023 .131874E-08
1.01919 .32672 .96269 .11497 -.12390 .00000 -.00025 .132437E-08
1.01260 .37520 .97526 .11539 -.12954 .00000 -.00027 .127128E-08
1.00586 .42432 .98838 .11176 -.13136 .00000 -.00027 .117204E-08
.99915 .47407 1.00169 .10475 -. 12951 .00000 -.00027 .104148E-08
.99266 .52447 1.01484 .09520 -.12430 00000 -.00026 .894573E-09
.98654 .57550 1.82746 .08401 -. 11616 00000 -.00025 .744530E-09
.98093 .62712 1.03927 .07202 -.10559 00000 -.00023 .601545E-09
.97591 .67929 1.04998 .05992 -.09311 00000 -.00028 .472222E-09
.97158 .73195 1.05937 .04823 -.07919 .00000 -.00017 .359689E-09
.96798 .78504 1 .06726 .03724 -.06427 .00000 -.00014 .264195E-09
.96515 .83847 1.07352 .02704 -.04867 .00000 -.00011 .183908E-09
.96312 .89216 1.07806 .01757 -.03264 .00000 -.00007 .115698E-09
.96189 .94604 1.08081 .00864 -.01638 .00000 -.00004 .557595E-10
.96148 1.00000 1.08173 .00000 .00000 .00000 .00000 .OOOOOOE+00

TIME- 24.00000 ITER= 13 BADFIT= 0
RADIUS Z COORD LAMBDA FORCE GRAD SRFTEN GRD RAD INRT AEST A-AEST
1.08743 .00000 .84567 .0008 00000 .00800 .00000 .00000E+00
1.08616 .04255 .84765 .06090 -.04574 .00000 -.00068 .492466E-09

1.08239 .08528 .85356 .11845 -.09087 .00000 -.00016 .943276E-09
1.07627 .12840 .86329 .16943 -.13152 .00000 -.00024 .131490E-08
1.06805 .17208 .87664 .21093 -. 16861 .0000 -.00031 .157812E-08
1.05805 .21649 .89329 .24060 -.19987 .000 -.00038 .171593E-08
1.04667 .26177 .91281 .25694 -.22393 .00000 -.00043 .172644E-08
1.03437 .30806 .93465 .25956 -.23974 .00000 -.00047 .162363E-08
1.02161 .35545 .95813 .24937 -.24673 .00000 -.00049 .143494E-08
1.00887 .40399 .98248 .22859 -.24497 .00000 -.00050 .119567E-08
.99657 .45373 1.00690 .20035 -.23525 .00000 -.00049 .941543E-09
.98505 .5e463 1.83859 .16822 -.21892 .00000 -.00046 .701953E-09
.97457 .55665 1.05287 .13559 -. 19771 .00000 -.00043 .496057E-09
.96531 .60970 1.07317 .10512 -. 17339 .00000 -.00038 .332328E-09
.95734 .66369 1.09111 .07855 -.14754 .00000 -.00033 .210764E-09
.95070 .71850 1.10641 .05662 -.12136 .00000 -.00028 .126099E-09
.94535 .77398 1.11896 .03925 -. 09561 .00000 -.00022 .707442E-10
.94127 .83001 1.12869 .02586 -.07065 .00000 -.00016 .368461E-10
.93839 .88645 1.13562 .01554 -.04654 .0000 -.00011 .174123E-10
.93668 .94315 1.13977 .00726 -.02309 .00000 -.00005 .668540E-11
.93612 1.00000 1.14115 .00000 .00000 .0000 .00000 .OOOOOOE+00

TIME- 30.00000 ITER= 14 BADFIT- 0
RADIUS Z COORD LAMBDA FORCE GRAD SRFTEN GRD RAD INRT AEST A-AEST
1.18253 .00000 .71512 .00000 .00000 .00000 .00000 .OOOOOOE+00
1.17970 .03624 .71855 .16431 -.08939 .00000 -.00014 .904549E-09
1.17131 .07282 .72888 .32174 -.17795 .00000 -.00028 .173702E-08
1.15765 .11007 .74618 .46444 -.26427 .00001 -.00042 .242348E-08
1.13923 .14833 .77050 .58297 -.34572 .00001 -.00056 .289024E-08

1.11681 .18794 .80176 .66644 -.41800 .00001 -.00070 .307412E-08
1.09142 .22923 .83950 .70409 -.47512 .00000 -.00082 .294327E-08
1.06433 .27248 .88276 .68874 -.51028 .00000 -.00092 .252397E-08
1.03700 .31792 .92992 .62146 -.51803 .00000 -.00097 .191504E-08
1.01082 .36568 .97871 .51448 -.49709 .00000 -.00098 .126465E-08
.98696 .41578 1.02660 .38889 -.45186 .00000 -.00893 .708748E-09
.96618 .46812 1.07123 .26708 -.39121 .00000 -.00084 .315406E-09
.94877 .52250 1.11090 .16498 -.32501 .00000 -.00073 .797861E-10
.93466 .57868 1.14471 .08914 -.26108 .00000 -.00061 -.403415E-10
.92352 .63637 1.17248 .03865 -.20394 .00000 -.00049 -.894406E-10
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.91495 .69529 1.19456 .00879 -.15514 .00000 -.00038 -.993939E-10

.90851 .75516 1.21154 -. e0611 -.11434 .ooooe -.00029 -.893934E-10

.90387 .81577 1.22403 -.01109 -.08014 .00000 -.00021 -.701414E-10

.90073 .87690 1.23255 -.01004 -.e5e83 .00eeo -.00013 -.473307E-10

.89893 .93837 1.23752 -.00572 -.02465 .00000 -.00006 -.236567E-10

.89834 1.ee0 1.23915 .0eee .00000 .00000 .oee .oooooeE+ee

TIME- 36.oOeeO ITER- 16 BADFIT- 0
RADIUS Z COORD LAMBDA FORCE GRAD SRFTEN GRD RAD INRT AEST A-AEST
1.42739 .00000 .49081 .00000 .00000 .00000 .00000 000000E+00

1.42174 .02527 .49472 .35855 -.10527 .00001 -.00008 .776654E-09
1.40475 .05095 .50676 .73072 -.21886 .000e3 -.00017 .156074E-08
1.37627 .07746 .52795 1.12821 -.34972 .ee004 -.00029 .235120E-08
1.33617 .10531 .56011 1.55718 -.50788 .00005 -.00046 312468E-08
1.28449 .13511 .60609 2.01001 -.70375 .0006 -. O0071 .380901E-08
1.22183 .16761 .66985 2.44656 -. 94391 .00006 -.00108 .423490E-08
1.15018 .20377 .75590 2.75124 -1.21376 .00005 -.00157 .407439E-08
1.07461 .24466 .86595 2.66063 -1.42370 .00002 -.00212 .290650E-08
1.00452 .29119 .99102 1.92341 -1.37901 .000ee -.00241 .963548E-09
.94924 .34356 1.10981 .90421 -1.06006 .00000 -.00219 -.261521E-09
.91150 .40102 1.20362 .19089 -.69381 .00000 -.00165 -.439089E-09
.88782 .46232 1.26867 -.12354 -.42292 .00000 -.00113 -.291637E-09
.87334 .52625 1.31110 -.20899 -.25454 .00000 -.00075 -.170783E-09
.86444 .59194 1.33824 -.20306 -.15498 .00000 -.00049 -,106839E-09
.85890 .65878 1.35555 -.16904 -.09579 .00000 -.00033 -.724216E-10
.85542 .72636 1.36661 -. 12961 -.05979 .00000 -.00022 -.502642E-10
.85322 .79442 1.37364 -.09197 -.03708 .00000 -.00014 -.336329E-10
.85187 .86280 1.37800 -.05812 -.02173 .00000 -.00008 -.203644E-10
.85113 .93136 1.38041 -.02795 -.01011 .00000 -.e0004 -.950541E-11
.85089 1.00000 1.38118 .00000 .00000 .00000 .00000 .000000E+00
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1 3. RESULTS AND PLANS

* A Fortran program, DROPGEN, has been developed and applied to
a problem of extensional flow of a jet of Maxwell model fluid.
The program calculates a one dimensional model of the growth
of a perturbation of the jet, following the piocess of droplet
format ion up to the emergence of a singularity in curvature Or,
the surfa'e of the jet.

* The program is designed to be easily adapted to handle similar
problems for other model materials, particularly for materials
with hereditary constitutive laws which are best treated in a
coordinate system fixed in the material. Such materials or--
dinariIy offer g1eat computational difficulties.

The program is constructed modularly so that its parts may be
abstracted and rearranged for use on other piot ohlems of dif-
feient geometry.'.5

, * The program contains a convenient subroutine for five-p(irt
central difference approximations to higher derivatives.

* The program contains a subroutine with an original, fast and
accurate solution of a set of inhomogeneous linear equations
arising from a pentadiagonal matrix of coefficients.

The calculations for a Maxwell model reveal the development
during drop formation of a singularity in the curvature along
the axis of the jet which is suggestive of a phenomenon ob-
served by Jones and Pee [1982]. This singularity seems to
arise from the elastic response of the filament.

The effects of changes in relaxation time, modulus, amplitude
and form of the perturbation and of different BKZ models of
the fluid should be explored with DROPGEN.

A * Improvements to DROPGEN might be achieved by rewriting the
program to allow adjustment of the time step and/or the node
interval in the course of the calculation.

To extend the computations beyond the time of the appearance

of the singularity it would be necessary to interpolate the
position of the singularity between nodes and to adjust a
force balance there. Markovitch and Renardy [1985] in a sim-
ilar problem illustrate a technique which might be adapted for
this purpose.

-- DROPGEN can probably be adapted with a moderate amount of work
to treat the problem of the extension under the influence of
gravity of a pendant drop of BKZ model liquid.
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APPENDIX A

DERIVATIVES CALCULATED FROM A FIVE POINT POLYNOMIAL FIT

Consider a physical quantity represented by a real valued

function of a real valued variable, F(Z). If we are given values of

this function measured or calculated at intervals along the Z axis,

* provided that the function is smooth enough and the intervals are

small enough, we can approximate the function and its derivatives with

respect to Z in terms of these given values. The easiest way to do

this is to represent the function by a smooth curve fitted to the

given values. In particular, we can approximate derivatives up to the

fourth by fitting a fourth order polynomial.

We will restrict our consideration to the simple case when the

intervals along the Z axis are regular. We can then represent Z at the

given values by an integer, say I, where Z=I Z and Z is the fixed

interval between adjacent values. It is convenient also to represent

the physical quantity by a real valued function of the integer

variable, G(I). To calculate derivatives of F(Z) from derivatives of

" G(I) is a trivial matter.

In order to approximate the derivatives of the physical

quantity at a point corresponding to I=I 0 , we represent the quantity

at this point by a fourth order polynomial taking on the value of G(I)

. at the five points centered on the point at I=I 0 . We use the "local"

integer variable J given by I-I 0 so that J is zero at I0 , the central

point, and antisymmetric about it, ranging from -2 to +2 over the five

points. Upon designating E(J) as the (unique) fourth order polynomial

in J equal to G(I) at the five points we can immediately write down

the following expression for it:

) (J- )J(J+)(J++ 2 )-(-2)J(J+1) (J+2)G(I0+1)+

(J-2) (J-l)(J+l)(J+2)G(I0)+
4 0

+ (J-2)J-l)J(O+l)G(I -2)- (J-I) (+2)G(I -1)
24 0 6 0
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This polynomial is designed to be equal transparently to G(I) at the

five points symmetric about 10. When the coefficients of the powers of

J are collected together the polynomial appears in a form more

convenient for differentiation, viz.:

4 3 2
E(J)= aJ +bJ +cJ +dJ+e (A2)

where the coefficients are as follows:

24a = 6G(I 0) - 4(G(I0 +1)+G(I 0-1)) + G(I 0+2)+G(I 0-2)

12b 2(G(I -1)-G(I 0+1)) + G(I +2)-G(I 0-2)12 0( (0 1 - I0 0+0

24c = 16(G(I 0+1)+G(I 0-1)) - 30G(I 0) - (G(I 0+2)+G(I 0-2)) (A3)

12d = 8(G(I +1)-G(I 0-1)) - (G(I 0+2)-G(I 0-2))

e = G(I )0

The derivatives of the physical quantity, F(Z), evaluated at the pointJ. A
Z=I AZ are calculated from the derivatives of E(J) at J=0.

0

F(Z) = e

F' (Z) = d/AZ

F'' (Z) = 2c/ (AZ)2 (A4)

F'''(Z) = 6b/( Z) 3

F ''''.(Z) = 24a/(A Z) 4

In applying these equations for the derivatives to our problem

we must treat seperately the points where I0 is equal to 1, 2, N 0-1,

and N because some of the necessary values of G(I) are for values of
I outside the half period of F(Z) of the calculation and are not

directly available. We must use the symmetries and periodicity of our

particular problem to find these values. Quantities which are directed

-". axially, such as the displacement of the nodes, have differences which

are antisymmetric about the ends of the half period, that is, they

conform to the following continuation beyond the ends:
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G(0)=2G(1)-G(2) , G(-I)=2G(1)-G(3)

G(N0 +l)=2G(N0 )-G(N 0-1), G(N 0+2)=2G(N0 )-G(N 0-2)

For scalar and radially directed quantities such as the

radius, which have zero slope at the endpoints, the following

equations apply:

G(0)=G(2), G(-I)=G(3)

G(N0 +)=G(N 0-1), G(N0 +2)=G(N 0 -2) (A6)

Equations (A4) can be substituted into equations (A3) (supplemented

when necessary with equations (A5) or (A6) according to the symmetries

of F(Z)) to evaluate the derivatives at the nodes.

This algorithm is used with the symmetries of equation (A5) in

the subroutines DERIV and SLOPES. In the main program the vector H2

containing the axial deviations of the nodes from their initial
positions is passed to the subroutine DERIV as the vector G. The

. derivatives of Z with respect to Z up to the fourth are returned in

the matrix E. The addition of one in the calculation of the first

derivative takes into account the fact that we calculate from the

deviations rather than the positions of the nodes.

The subroutine SLOPES is used in calculating the radial

inertia. The velocity at the nodes is passed to vector G of the

subroutine as vector V2 from the main program. The first and second

spatial derivatives only are returned from the subroutine, also in

matrix E.

P
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APPENDIX B

SOLUTION OF LINEAR EQUATIONS ARISING FROM A PENTADIAGONAL MATRIX

The system of linear equations to be solved consists of NO

equations in N unknowns, A.. The constant coefficients of the equa-0 1

tions are assigned the values a, b., c, d, and e to give the fol-

." lowing scheme:

c1A1 d1A2 e1A3 =f

b 2A 2I+c 2A 2+d2A3 e2A4 =f

a3 A1 +b3 A2 +c3 A3 +d3A4 e3A5 =f

a4AbA+c4A 4 A +b A 5e =f

a2 a A 2+b4 A C A +d.A +e A =f
Si-2 i 1-1 i i i i+1 i i+2 =fi(B)

'2

Sa 3A 5+b 3A 4+c 3A 3+d 3A  2+e A =f -

a A ia A +b A +C A dN A +e AN=f

,N0- 2 N 0- 4 N0-2 N O _ N _. N0-_ 2 N -2 N0-1 N O _- N 0-+b A  2c +d =f N _i
N-N-4N0-2 N0-3 N 0 -2 N O -2 N0-2AN0-l N0-2AN 0 N-

a A 2+b A +C A =f
N O  N0-2 N O  N0-i N O  N O  N O

The algorithm we develop for solving this system is a form

* of Gaussian elimination. It is a generalization of the Fortran program

for solving a tridiagonal system given by Carnahan, Luther and Wilkes

[1969] in Applied Numerical Methods.
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The ith unknown will be given by a recursion relation in the

form of a linear combination of the (i+l)th and (i+2)th unknowns,

thus:

A. 8,Ai+ iAi+2 (B2)

where ,6 i and are to be evaluated from the coefficients of the
system (Bi). With this equation we can express A. and Ai- 2 in terms

-, of A and A

Ai-l=i l. 6i~Ai+ .i1 Ai.l

(B3)

A i-2= )A,++ i-2 Yi-i+ ( i-2_ ,i-,i-2)Ai+  z-2 i-1 t i+1

Upon putting these equations into the ith equation of the system (BI)

we can see that the Greek coefficients of equation (B2) also can be

evaluated by recursion relations among themselves. For i ranging from

3 to N -, these relations are
0

7"= (f -b. T1 i--ai (i-2 + i-2 7 i-1)/ i

"<'-' i=-(ai 6i-2 _i-+bi, i-,+dI,)/

0= (a8i-2E
(B4)

i 
ii 

e

= 1~ i-2 + i-1 3i-2 ) +b 8_1c

These equations may be used as recursion relations because the Greek

coefficients on the right are all of order less than i. The Greek

coefficients for i=l and 2 can be directly evaluated from the equa-

tions of (B1) as follows:
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T f / Y(c f -bd

1=1 72= 1 2 21 ~2

1 =-d/ 1  (becd/

1 0.1 2 2 e1 c 1 2 ~2
(B5)

=-1eI- =-c e2

1 1=ClC2-b 2d1
" 1 l=-Cl 1

This set of equations is still not sufficient to solve the problem

because equation (B2) can not directly be used to find the (N 0)th and

(N 0-1)th unknowns. However, it can be used to eliminate all other

unknowns from the (N 0)th an (N 0-1)th equations of (BI) and the result-

ing pair of equations can be solved for the two unknowns.

A N01=(RIQ2-R2Q / (PQ2-P2QI)

AN0 =(PIR2-RIP )/(PIQ2-P 2QI )

where (B6)

P=b +a N0_2 P2=c +b N O_ _2+a ( +3N0_ 2N0 3 )1I N0 N N-2N0-i N0-1N- N0-i N0-3 N2 N-3

Ql=C +a N0 -2  Q2 =dN+bN _ N_2 +aN _1 5 N_3N2

R1 =fN 0 aN0 7N 0 - 2  R2= fN0-1-bN0- 1N0-2 N0- 1t '0-3 N0-3

Equations (B2), (B4), (B5) and (B6) can be used to evaluate the

unknown A, 's of system (Bi) and this set of equations constitutes a1
complete solution of the pentadiagonal system.

This algorithm is executed in subroutine VBAND. The

coefficients of the system of linear equations (BI) are passed to the
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subroutine in the form of a 6 X N matrix, CMAT. The i'th column of

CMAT is formed of the coefficients of the A 's in the i'th equationj
augmented by f'.' the right hand side of the equation. The number NO is
passed to the subroutine as well as five vectors used for storing the

the solution A as well as the four intermediate Greek coefficients,

gamma, delta, epsilon and xi. The vectors are passed to the subroutine

as a strategem to allow dimensioning from the main program.

The algorithm proceeds in two stages; the intermediary Greek

coefficients are calculated by use of equations (B5) and subsequently

recursion relation (B4); then, the unknown A.'s are calculated1

starting with the (N 0)th and (N 0-1)th through equation (B6) and then

the remaining A.'s in descending order through recursion relation1

(B2).

A.7B

1

Apeni B5

,,p *



APPENDIX C

EXTRAPOLATION OF ACCELERATION, VELOCITY AND DISPLACEMENT

Extrapolations of acceleration, velocity and displacement are

needed in calculating the acceleration at each time step. To make

these extrapolations we use the following accelerations: AF, an

estimate of the acceleration one time step in the future; AP,

acceleration at the present time; AR, of the most recent past; AO, of

two time steps in the past. The acceleration is taken to be a cubic

curve in time passing through these four values. Then, velocity and

displacement at one time step in the future are given by the following

equations:

VF=VP+(9AF-5AR+AO+19AP)At/24

(1)

HF=HP+VP t+(38AF-36AR+7AO+171AP) (At)2 /360

where HF and VF are the velocity and displacement at one step into the

future and HP and VP are are the present velocity and displacement. At

the first iteration AF is simply the projection by quadratic curve

through the three earlier accelerations and is given by the equation:

AF=AO+3(AP-AR) (2)

The past times AR and AO are not available in calculating the

first time step so that a linear extrapolation of acceleration must be

used. In that case the following equations apply:

VF=VP+(AF+AP)4t/2

HF=HP+VP t+(2AP+AF) At)2 /6 (3)

AF=AP for first iteration

For calculating the second time step the acceleration AO is
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not available and a quadratic curve is used for extrapolation. In this

case, we have the following equations:

VF=VP+ (5AF-AR+AP)&t/12

HF=HP+VP t+(10AP+3AF-AR) (&t)2 /24 (4)

AF=2AP-AR for first iteration.

.

n
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APPENDIX D

CALCULATING INTEGRALS BY UPDATING

For a BKZ material, the viscoelastic force gradient is
expressed through integrals over the history of the stretch and its
derivatives. In the general case the calculation of these integrals

requires that the history of the material be stored for a period into

the past determined by the rate of the fading memory. The calculations

of this report are done in that way to illustrate this general method

but, for special kernal functions of the BKZ model other methods of

integration may prove more convenient.

In the example of the Maxwell model, we might have done the

integration in way which does not require storing the complete

history. The Maxwell model may be expressed in terms of a differential

equation rather than an integral equation. In that case, the stress

(and thus the force gradient, also) is expressible as a sum of

integrals, each of which can be evaluated by updating quantities at

each time step.

Consider an integral of the following form:

it

AMt)= G(t) H()d7 (CI)

0

We can use the trapezoidal rule to approximate this integral and thus,

to computational accuracy, we can write:
1-1

A (N4&t) =G (Nat) H (n&t) At+

Ze t (C2)
+G (N4t)[H(0) +H(N4t) I &t/2

where t=N~t andr=nt. The quantity A is here evaluated at an integral

number of time steps from time zero. The integral for the next time

step can be worked out by substituting N+1 for N in this equation and
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expressing the resulting summation in terms of A(N t). This process

leads to the following equation:

A((N+1)At) =A(Nt)G( (N+1)At)/G (Nt)+ (C3)
+G((N+I)&t) [H(N&t)+H( (N+l)i t)]I At/2

With this equation the integral can be evaluated by updating from a

time one interval earlier. Of course, to start off the the method an

evaluation of A(O) must be supplied.
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